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A B S T R A C T

The complex geology and undulating terrain made Nepal vulnerable to natural disasters like landslides. Benighat-
Rorang Rural Municipality (RM), in the Dhading district of Nepal's Bagmati province, has experienced several
minor to massive landslides that have harmed both nature and civilization. This study examines the factors
influencing landslides in the Benighat-Rorang RM by analyzing soil structure, geology, land cover, geo-
morphology (primarily slopes and aspects), fault lines, drainage density, weather data, and road density to
generate a comprehensive Landslide Susceptibility Mapping (LSM). The LSM will help in identifying landslide-
prone zones (high to low), which will, in turn, enable stakeholders to implement appropriate mitigation mea-
sures across the landslide-induced rural municipality. The current study intends to create Landslide susceptibility
zonation mapping within and around the studied area by applying the AHP method while taking into account the
optimal set of geo-environmental parameters to identify regions at risk of future landslides. Elevation, Slope,
Aspect, Drainage, Geology, Soil Classes, Fault Line, Lineaments, Land-cover, Road Networks, Population, and
climatic parameters (Rainfall, Temperature, Relative Humidity, Surface Pressure, and Wind Speed) are among the
fourteen geo-environmental elements used for this research. Using the field verification approach, the results of
this procedure have been validated, which can be observed in an estimated success rate curve. Meteorological
factors, such as temperature, rainfall, relative humidity, surface pressure, and wind speed, have been examined
regarding landslide susceptibility. Thus, an integrated assessment of landslide susceptibility was applied to the
area to identify inhabited areas vulnerable to or at risk of landslides. Furthermore, the placement of public
amenities throughout the research zone was considered while conducting the social vulnerability risk analysis.
Finally, landslide susceptibility zonation, climatic factors influencing landslide susceptibility, and social vulner-
ability assessment results of the study area have been combined to generate a risk map identifying landslide-prone
municipal facilities and vulnerable communities. This study will help in building resilient landslide communities
through effective spatial urban planning that incorporates regional risks induced by landslides with infrastructure
development and management strategies.
1. Introduction

Natural disasters are affecting more lives and causing economic
devastation worldwide (Confuorto et al., 2019). Landslides are among
the most common visible natural hazards across mountainous locations,
causing human fatalities and infrastructural and economic damage
(Pourghasemi and Rahmati, 2018). Long-term records indicate that the
risk of landslides is increasing over time, with recent increases related to
continuous climate change and rising population (Tehrany et al., 2015).
Rapid temperature rise (>0.06 �C), retreating glaciers (>30nullm/year),
irregular rainfall, and an increase in the frequency of natural catastrophes
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such as landslides are all well-documented impacts of climate change
(Karki et al., 2017). It is already proved that the landslide issues in Nepal
have worsened due to climate change and the increased frequency of
catastrophic occurrences (Kayastha et al., 2013; Bijukchhen et al., 2013).

In Nepal, landslides pose severe social and economic damage because
of a distinctive combination of dynamic geological settings, rapid
weathering, and copious rainfall. Moreover, landslides, though classified
as natural phenomena in conception, are also frequently triggered by
human endeavors (Lima et al., 2017). Nepal's location in the center of the
Himalayan arc already made it vulnerable and target site for the conse-
quences of climate change (Dhungana et al., 2022). This geographic
arch 2023
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Table 1
Year-wise impact from landslides on Nepal's buildings and settlements.

Year Affected
Families

Govt. Residences(Completely
Damaged)

Private Residences(Completely
Damaged)

Private Residences (Partially
Damaged)

Displaced
Sheds

Estimated Loss
(NPR)

2011 32 0 100 6 8 45,726,800
2012 65 0 65 74 11 20,597,500
2013 174 0 135 60 14 169,127,458
2014 491 0 143 37 14 23,665,979
2015 407 0 121 96 10 642,400
2016 1488 0 358 440 107 810,442,200
2017 334 0 140 40 19 61,543,000
2017 334 0 140 40 19 61,543,000
2018 749 0 188 109 48 130,119,000
2019 3054 0 1132 1590 77 405,186,000
2020 771 3 383 68 93 50,964,900
Total 7565 3 2765 2520 401 1,718,015,237

Source: http://www.drrportal.gov.np/.

Fig. 1. Area selected for the current study.
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disadvantage is further exacerbated by unplanned urbanization, poor
development plans, inadequate understanding of landslide hazard risks,
and insufficient access to basic public services (Inderberg et al., 2015).
All these factors are responsible for making Nepal susceptible to landslide
risks, which in turn requires a resilience strategy.

In Nepal, the advent of landslides is directly related to rainfall, and
rainfall-induced landslides across the Nepal Himalayas inflict immense
damage to lives, properties, infrastructures, and the environment, espe-
cially during the monsoons (Dahal and Hasegawa, 2008; Dahal, 2012).
According to MoHA (2019) total 28597 disaster incidences (floods, fire
events, landslides) were reported across Nepal over a 49-year period
(1971–2019). Within this period, Nepal experienced approximately 3729
landslide incidences, claiming 5141 lives, injuring 2053, affecting 7758
families, and destroying 1000 houses (Table 1). Landslides in Nepal ac-
count for 35.6% of the total number of fatalities among all disasters
(DWIDM, 2015). Therefore, mapping landslide-prone regions in Nepal is
critical for efficient land use, disaster management and ultimately
building a strong urban resilience plan (Ahmed, 2015). The urban
resilience of a place refers to the ability to resist and recover from
extreme shocks generated by risks and environmental changes (Pickett
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et al., 2004). It is possible to effectively build resilience in urban infra-
structure by implementing proactive urban development and manage-
ment strategies that consider and adapt to the various natural hazards
and risks.

The first step of building resilience community is to assess the suscep-
tibility of a particular area (Pal et al., 2022), and identify potential landslide
riskzones. Susceptibilitymapping indicates zoneswithin the studyarea that
are higher or lesser susceptible to subsequent landslides based on relatively
greater or lower probabilities or categories of probabilities (Tehrany et al.,
2015). On a pixel-by-pixel basis, data-driven or expert-based approaches
are typically utilized to generate the LSM. (Nachappa et al., 2019). How-
ever, it is possible to achieve LSM through several techniques, including
Deterministic Coefficient Model (Li et al., 2022), Statistical Bivariate
Models, Frequency Ratios (FRs) (Khosravi et al., 2016), Evidence Belief
Functions (EBFs) (Nampak et al., 2014), Multivariate Model of Logistic
Regression (LR), and Heuristic Model such as Analytical Hierarchical Pro-
cesses (AHP) (Ghorbanzadeh et al., 2018). Then the models based on Ma-
chine Learning (ML) algorithms like Support Vector Machine (SVM)
(Tehrany et al., 2015) and Random Forest (RF) classifier algorithms (Chapi
et al., 2017) are also used to assess landslide susceptibility.

http://www.drrportal.gov.np/


Table 2
Preceding landslide incidences occurred across Benighat-Rorang RM, which is
used as landslide inventory datasets for the current study.

S.N Ward No Place Year (AD) Remarks
(Source)

1 Benighat
Rorang-10

Laitak 2020, July Ward Office

2 Benighat
Rorang-10

Mauwakhola 2020, July Ward Office

3 Benighat
Rorang-10

Kotgau 2020, July Ward Office

4 Benighat
Rorang-10

Jawang 2020, July and
2021, June

Ward Office

5 Benighat
Rorang-10

Kosrang 2017, July Ward Office

6 Benighat
Rorang-10

Tigrang Khani 2021, June and
2022, July

News

7 Benighat
Rorang-10

Jogimara 2021, August News

8 Benighat
Rorang-9

Panchaling 2021, June Ward Office

9 Benighat
Rorang-9

Bharpang 2020, July Ward Office

10 Benighat
Rorang-9

Besitol 2021, July Ward Office

11 Benighat
Rorang-9

Rowang 2021, June Ward Office

12 Benighat
Rorang-9

Majimtar 2022, May RM Office

13 Benighat
Rorang-8

Dhushatar 2020, June News

14 Benighat
Rorang-7

Krishna Veer
Padhero Kholcho

2021, July Ward Office

15 Benighat
Rorang-7

Charaudi dudey 2021, June Ward Office

16 Benighat
Rorang-7

Khanyachaur 2021, July Ward Office

17 Benighat
Rorang-7

Dhusa 2008, July Ward Office

18 Benighat
Rorang-6

Bungrang 2021, June Ward Office,

19 Benighat
Rorang-6

Bungpung 2018, June Ward Office

20 Benighat
Rorang-6

Bhumi Dada 2019, July Ward Office

21 Benighat
Rorang-3

Nayagau 2022, May RM Office

22 Benighat
Rorang-3

Bhantabari 2021, July Ward Office

23 Benighat
Rorang-3

Alegau 2020, July Ward Office

24 Benighat
Rorang-3

Mathillo Orbang 2021, July Ward Office

25 Benighat
Rorang-3

Gomati Gau 2019, June Ward Office

26 Benighat
Rorang-3

Khanikhola 2021, July Ward Office

27 Benighat
Rorang-3

Chisapani Dhap 2021, June Ward Office

28 Benighat
Rorang-3

Laure Dada 2021, June Ward Office

29 Benighat
Rorang-3

Thapa Gau 2020, July Ward Office

30 Benighat
Rorang-3

Orbang School 2021, July Ward Office

31 Benighat
Rorang-2

Hobang 2010, May Ward Office

32 Benighat
Rorang-2

Kafalfedi 2015, April Ward Office

33 Benighat
Rorang-2

Kharkha Laisur 2015, April Ward Office

34 Benighat
Rorang-2

Panchaling 2015, May Ward Office

35 Benighat
Rorang-2

Karkidada 2019, July Ward Office

36 Benighat
Rorang-2

samrang 2015, May Ward Office

Table 2 (continued )

S.N Ward No Place Year (AD) Remarks
(Source)

37 Benighat
Rorang-2

Kalanga 2015, May Ward Office

38 Benighat
Rorang-2

Gadi, maskharka 2012, July Ward Office

39 Benighat
Rorang-2

Thakpal 2015, April and
2022, June

Ward Office

40 Benighat
Rorang-2

Gairang 2022, May Ward Office

41 Benighat
Rorang-2

Dubling 2018, June Ward Office

42 Benighat
Rorang-1

Thimbang-Chitpur 2013, May Ward Office

43 Benighat
Rorang-1

Thimbang-Titekhagi 2013, May Ward Office

44 Benighat
Rorang-1

Baskharkha school 2013, April Ward Office
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The Deterministic method-based Coefficient Model uses historical
landslide locations and hazard-inducing variables to determine the sus-
ceptibility interval for a particular hazard-inducing factor. Through
assessing the susceptibility of various classes to various causes, it is used
by Li et al. (2022) to the categorization of data on landslides and
non-landslides. FR, a bivariate model, shows how frequently a specific
characteristic occurs (Bonham-Carter, 1994). It is utilized to reveal cor-
relations between the occurrence of landslides and the factors influ-
encing them based on the observed relationship (Lee and Talib, 2005).
The FR value above 1 indicates that there is a high correlation between
the area and landslides and the FR value below 1 indicates a weak cor-
relation (Youssef et al., 2015). EBF is another bivariate model based on
the evidence theory of Dempster-Shafer (Dempster, 1967; Shafer, 1976).
It has been found to be a viable and efficient method of assessing land-
slide susceptibility (Achu and Reghunath, 2017; Chen et al., 2018a,b). It
can simulate landslide susceptibility by generating values generating
values for uncertainty, disbelief, and plausibility, ranging from 0 to 1
(Althuwaynee et al., 2012). The landslide densities are used to rank pa-
rameters in this method (Ayalew and Yamagishi, 2005; Chen et al.,
2018a,b). LR is a multivariate statistical model that finds the best-fitting
curve to characterize the correlation between dependent variable, as the
frequency of landslides (0–no landslides, 1–landslides) and a combina-
tion of independent variables (slope, angle, drainage network including
proximity to rivers or watersheds, etc.). There appear to be no guidelines
for identifying variables within logistic regression models used to eval-
uate landslide risk, and the factors considered in logistic regression
analysis vary across published research (Ayalew and Yamagishi, 2005).

The dynamic components were included as explanatory factors in the
study and were derived using remote sensing datasets related to dynamic
alterations in the surface underneath. Geographic information systems
(GIS) play a major role in effective landslide risk management (Aydino-
glu and Bilgin, 2015). In general, landslide susceptibility refers to the risk
of a specific type of landslide impacting a specific location in the long
term (Dilley, 2005). Some primary methods and techniques used and
combined to evaluate landslide susceptibility are regression analysis,
remote sensing (RS), techniques, and multi-criteria decision-making
based on GIS (Pourghasemi et al., 2013; Alam et al., 2019). The efficacy
of GIS and RS has improved landslide management (Dou et al., 2014)
through landslide susceptibility mapping (LSM), involving the spatially
accurate assessment of the risk of potential landslide recurrence based on
the impacts of conditioning variables in a specific area (Hong et al.,
2015). Furthermore, the heuristic model AHP, based on MCDA (“Mul-
ti-criteria decision analysis”), provides qualitative and quantitative par-
adigms (Li et al., 2022) employed in this study for LSM.

In the current study, the heuristic AHP method was applied to create
Landslide susceptibility zonation mapping within and around the studied
area while taking into account the optimal set of geo-environmental



Table 3
Datasets used for the current study.

Data Type Description Time Resolution Source

Elevation Digital Elevation Model (DEM) 2011 30 m https://srtm.csi.cgiar.org/
Slope
Aspect
Drainage
Geology Polygon shape file format 1:5,000,000 https://certmapper.cr.usgs.gov/data/apps/world-maps/
Soil Classes Digital Soil Map of World (DSMW) 2022 5 km https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-so

il-map-of-the-world/en/
Fault Line Polygon shape file format https://www.usgs.gov/programs/earthquake-hazards/faults
Land-cover Multispectral Satellite Imagery

(Sentinel-2A)
2022 10 m https://earthexplorer.usgs.gov/

Roads Line shape file format 2022 3.2 m https://openstreetmap.in/#4.37/22.82/82
Lineaments Multispectral Satellite Imagery

(Sentinel-2A)
2015 30 m https://glovis.usgs.gov/

Rainfall PERSIANN 2022 0.25 * 0.25 ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN
Temperature NASA Power 2001–2019 2 m https://opendatanepal.com/dataset/district-wise-daily
Relative
Humidity

2001–2019 2 m

Surface Pressure 2001–2019 _
Wind Speed 1981–2019 50 m
Population WorldPop Global data 2000–2020 3Arc-

Seconds
https://www.worldpop.org/
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parameters to identify regions at risk of future landslides. Elevation,
Slope, Aspect, Drainage, Geology, Soil Classes, Fault Line, Lineaments,
Land-cover, Road Networks, Population, and climatic parameters
(Rainfall, Temperature, Relative Humidity, Surface Pressure, and Wind
Speed) are among the fourteen geo-environmental elements considered
as landslide conditioning factors for this research. Finally, this research
investigates the enduring conditioning factors and analyzes them to
generate a robust LSM for the study area. Using LSM will facilitate
identifying landslide-prone zones (high to low), enabling stakeholders to
implement appropriate mitigation measures across the landslide-induced
study area and put together strategic resilience frameworks to support
the environmentally sustainable development of mountainous
communities.

2. Study area

The Benighat-Rorang Rural Municipality (RM) (Fig. 1) in Dhading
district of Nepal's Bagmati province has been selected as the study area.
Benighat-Rorang RM is split into 10 wards (Dhungana et al., 2022), with
Benighat designated as the rural municipality's administrative center
(Wikiwand, 2022). As per the digital profile, the rural municipality has
approximately 32207 population spanning over 10 municipal wards,
covering an area of 206.52 km2 (Household survey, 2021).

The geology and geomorphology of the region vary significantly, with
the former being more or less associated with the region's elevation and
gradient (Kayastha and De Smedt, 2009). The geology of this region
consists of Precambrian rock formations in the Lesser Himalayan Divi-
sion, which is characterized by elevated mountainous ranges and river
valley networks (Dahal et al., 2014). This study area lies at 2400 m above
mean sea level, characterized by the combination of medium to
low-graded metamorphic and sedimentary rocks, e.g., quartzite, lime-
stone, dolomite, phyllite, slate, along with granitic outcrops. Here the
rock masses are highly layered, faulted, and fractured; an intricate system
of fractures and joints on the rocks makes the terrain highly vulnerable to
landslides triggered by rain, earthquakes, snow melt, etc. (Kayastha and
De Smedt, 2009; Dahal, 2014).

In terms of landslide susceptibility, Benighat-Rorang RM ranks high
in the MoFE (2021) climate-induced hazards exposure ranking
(0.435–0.578) among RMs. According to the IPCC RCP (“Representative
Concentration Pathway”), Benighat-Rorang's climate risk rank is very
high (>5.2) by 2030 (RCP 4.5), and 2050. (RCP 4.5; 8.5) (Ministry of
Forests and Environment, 2021). Fig. 1 also shows the past landslide
events occurred in the rural municipality under current study. These
173
indices and future scenarios show that there will be a significant rise in
risk for the Benighat-Rorang RM as a result of the increasing probability
of severe events like landslides.

3. Materials and methods

3.1. Landslide inventory

A detailed landslide inventory strategy can assist studies in better
understanding the relationship between chronological landslide occur-
rence and landslide trigger factors (Yu et al., 2022). However, the
Department of Survey, the Government of Nepal, and the MoFE have
produced a landslide inventory dataset of historical data, an archive of
documented landslide episodes, with the allocation of location, type,
borders, materials, and deformation aspects (“Ministry of Forests and
Environment”) is not regularly updated, nor does it cover all
landslide-prone areas in minute detail. The inventory points in the cur-
rent study have been randomly allocated into two clusters: 70% (152
points) in training and 30% (46 points) in validation. Validating all
chronological landslides in the study area from April 2020 to July 2020
(Table 2), a handheld GPS device has been employed to verify and
reorganize the borders and positions of all landslides. The ability of GPS
technology to track these ground movements' sub-centimeter de-
formations has been demonstrated. The primary benefit of GPS sensors is
that there is no need for a direct line of sight among the locations. This
makes it possible for GPS to keep track of the landslide in real time even
when the weather is unfavorable (Rawat and Joshi, 2011). Thus for the
current study handheld GPS has been used to monitor and recognize the
borders and positions of the recent landslide events occurred in the study
area.
3.2. Relevant data

A landslide, according to Westen et al., (2008), is the movement of
materials over the slope. This term accurately depicts the system's in-
tricacy and the range of conditioning factors that influence it. The most
common variables, according to the literature review, are the hydro-
graphic parameters such as drainage density, distance from rivers,
morphometric parameters such as slope, aspect, elevation, land use,
proximity to fractures, and related elements (van Westen et al., 2008). In
this study, elevation has been considered an essential factor influencing
landslide susceptibility because the elevation of a region influences
landslide susceptibility since different elevation ranges comprise

https://srtm.csi.cgiar.org/
https://certmapper.cr.usgs.gov/data/apps/world-maps/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
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http://www.usgs.gov/programs/earthquake-hazards/faults
https://earthexplorer.usgs.gov/
https://openstreetmap.in/#4.37/22.82/82
https://glovis.usgs.gov/
https://opendatanepal.com/dataset/district-wise-daily
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Table 4
Classified table with weights and vulnerability classes allocated to the causative factors.

LSM¼ðSlope*3Þþ ðrainfall*2Þþ ðelevationÞþ ðAspectÞþ ðDrainageÞþ ðGeologyÞþ ðFault LineÞþ ðLand CoverÞþ ðRoadÞ þ ðProximity to RoadÞ þ ðProximity to LineamentsÞ Eq.(1)

Data Type Class Susceptibility classes Weights

Elevation >2050 m Very high 1
1550–2050 m High
1050–1550 m Moderate
650–1150 m Low
<650 m Very Low

Slope >60� Very high 3
45�

–60� High
30�

–45� Moderate
15�

–30� Low
<15� Very low

Aspect >288� Very high 1
216�

–288� High
144�

–216� Moderate
72�

–144� Low
<72� Very low

Geology Igneous (Granitic Outcrop) High 1
Sedimentary (limestone, dolomite) Low
Metamorphic (Quartzite Phyllite, Slate) Moderate

Soil Dystric Cambisols Moderate 1
Fault Line >2050 m Very high 1

1350–1950 m High
750–1350 m Moderate
100–750 m Low
<100 m Very Low

Land Cover Built-up Area Very high 1
Open Land High
Water Body Moderate
Crop Land Low
Forest Very low

Rainfall >1350 mm/year Very high 2
1050–1350 mm/year High
700–1050 mm/year Moderate
350–700 mm/year Low
<350 mm/year Very low

Drainage Density 3.152–3.94 km�1 Very high 1
2.364–3.152 km�1 High
1.576–2.364 km�1 Moderate
0.788–1.578 km�1 Low
0.788 km�1 Very low

Proximity to Roads <200 m Very high 1
200–400 m High
400–600 m Moderate
600–800 m Low
>800 m Very low

Proximity to Lineaments <200 m Very high 1
200–400 m High
400–600 m Moderate
600–800 m Low

LSM has been used in the current study using the following equation (1) (Michael and Samanta, 2016).
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different soil layers, vegetation types, and rainfall patterns, along with
human activities (Costanzo et al., 2012; Dai & Lee, 2002). As standard
deviation of elevation is directly linked to relative relief and could be
used to determine the potential energy for erosion and mass wasting
(Günther et al., 2013; Oguchi, 1997; Sabatakakis et al., 2013). Usually,
landslides tend to be more common at higher elevations. As a result,
elevation is regarded as a significant driving component inducing land-
slides (Vojtekov�a and Vojtek, 2020a). Aside from that, elevation is the
most commonly used factor in determining landslide vulnerability (Guo
et al., 2021; Ngo et al., 2021).In terms of physical predispositions to
landslides, the slope is considered a component influencing landslide
susceptibility in the current study. The slope as a landslide conditioning
factor has been prioritized in recent studies (Bera et al., 2019; A. Kumar
et al., 2018; Nicu, 2018). It is chosen as one of the main factors for
landslide susceptibility mapping because it is closely linked to the slope
stress region, which influences the collapse mechanism and dynamic
174
properties of landslides (Hong et al., 2019). Following the work of Demek
(1972), the slopes have been reclassified into five classes (>60�, 45�–60�,
30�–45�, 15�–30�, <15�) in this study.The aspect factor plays a vital role
in this study of landslide susceptibility mapping because it affects
microclimatic parameters such as solar radiation, soil moisture, slope
exposure, rainfall, and wind intensity, which influence plant growth and
soil humidity. Then these have an indirect influence on landslides
(Guzzetti et al., 1999; Dai & Lee, 2002; Demir et al., 2013; Dou et al.,
2015.; Wang et al., 2019). Previous studies have revealed that aspect
value is crucial when landslides occur following the development of
tension cracks. Thus following Abraham et al. (2021), the aspect value of
the study area, which ranges from 0� to 360�, was applied as a categorical
variable after reclassifying the angular values into five classes based on
its facing orientation.Geology is considered an essential
landslide-conditioning component for this study since it is linked to the
resistance to landslides, which varies due to the composition of



Fig. 2. The thematic layers of the input parameters required for the current study: a) Elevation, b) Slope, c) Aspect, d) Drainage, e) Geology, f) Soil, g) Fault Line, h)
Land Cover i) Road, j) Lineaments.

Fig. 3. Landslide conditioning parameters: The thematic layers of the input parameters required for the current study: a) Elevation, b) Slope, c) Aspect, d) Drainage, e)
Geology, f) Soil, g) Fault Line, h) Land Cover, i) Proximity to Road, j) Lineaments.
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underlying different rock types (Gemitzi et al., 2011; Vojtekov�a and
Vojtek, 2020b). As the geology of the area under study (Table 4) consists
175
of igneous granitic outcrops; sedimentary limestone and dolomites;
metamorphic quartzite, phyllite, and slate, it possesses differential



Fig. 4. Workflow of the methodology applied in the current study.

Fig. 5. The cumulative proportion of reported landslide events vs the cumula-
tive percentage of declining landslide susceptibility index score is depicted by a
success rate curve. Fig. 6. Field verification points.
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resistance to landslides. Since most of the region's geology is composed of
granitic outcrops, which are more brittle under dynamic stress and are
subject to primary erosion following a landslide, thus they are highly
vulnerable to the same (Schramm et al., 1998). The sedimentary lime-
stones and dolomites make up a minor fraction of the geology of the
study area and are assigned less susceptible to landslides compared to
granites (Table 4) and regarded to be resistant to landsliding formations.
However, this is exceedingly reliant on a variety of elements, including
erosion intensity and structural integrity, all of which can change the
basic nature of a geological formation (Gemitzi et al., 2011). Then the
study area's dolomite composition termed “Dhading Dolomite”, is less
susceptible to landslides due to its relatively rough surface and dearth of
clay minerals (Khanal, 2013). The metamorphic rocks (quartzite, phyl-
lite, and slate) that make up the last portion of the geology of the study
area are then classified as moderately susceptible to landslides since they
are weakly deformed low-grade metamorphic rocks (Budha et al.,
2016).The soil component has been included in the current study on
Landslide susceptibility mapping since this method reflects the pro-
pensity of soil to induce landslides, and the complex character of land-
slides is dependent on the soil condition of the area under study (Liu
et al., 2019).The distance from faults is recognized as a standard
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landslide-conditioning element since it is considered in several studies on
landslide susceptibility (van Westen et al., 2008; Vojtekov�a and Vojtek,
2020b). In the current work on landslide susceptibility mapping, the
factor, distance to faults has been taken into consideration since, along
with other landslide causative factors (slope, aspect, drainage density), it
has been found to have a positive correlation with the incidence of
landslides (Dou et al., 2015). All faults in tectonically active regions are
considered vital in triggering landslides (Bui et al., 2011). As a result, the
distance to faults has been included in this study to assess the relationship
between lineaments and the occurrence of landslides.Land use was
selected as a landslide-conditioning factor in the current study as it is one
of the preliminary characteristics indicating an area's predisposition for
landslide incidence (Vojtekov�a and Vojtek, 2020b). Land use is among
the top five factors utilized in landslide susceptibility evaluations
(Pourghasemi et al., 2012). Land use patterns are frequently observed to
significantly affect the occurrence of landslides because they are pri-
marily associated with anthropogenic intervention on hill slopes, which
contributes to landslide incidences (Pradhan and Lee, 2010; Zhu et al.,
2010). According to the possible contributions to landslide susceptibility,
five land use classes (Built-up Area, Open Land Water Body, Crop Land,
and Forest) were analyzed and categorized using remote sensing data. As



Fig. 7. Pictures of the landslides sites in Benighat-Rorang RM a) Laitag (b) Baangti Khola (c) Bungaira, (d) Nayagau.

Fig. 8. Landslide susceptibility map of the Benighat-Rorang RM.

Table 5
Areal extent of the landslide susceptible zones of the Benighat-Rorang RM.

Landslide Susceptibility Zones Area Susceptible to Landslide

km2 %

Very High 21.95 10.77
High 53.1 26.05
Moderate 54.97 26.97
Low 34.94 17.14
Very Low 38.84 19.06
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per Kumar et al., 2018, agricultural activities (moderate susceptibility to
landslides), built-up areas involving the construction of buildings and
roads in the region (very high susceptibility to landslides), deforestation
leading to the formation of open lands (high susceptibility to landslides),
and landslides are the anthropogenic factors responsible for reducing the
stability of the hill slope.Many studies indicate that various variables,
including the construction of new communities and infrastructure in
landslide-prone regions, variations in land use patterns, and the impacts
of climate change on the onset of severe rainfall events, are accountable
for the genesis of landslides (Zare et al., 2013; Guzzetti, 2016; Reich-
enbach et al., 2018). Thus, rainfall intensity is selected as a main
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landslide-triggering factor for this study on Landslide susceptibility
mapping. Rainfall is a critical triggering factor of landslides in Nepal, as
evidenced by the fact that most landslides occur during the rainy season.
When rain falls, infiltration occurs, and pore water pressure develops on
soils and rock mass, which reduces the shear strength of the rocks and
soil, inducing landslides (Khanal, 2013). As per Table 4, areas with high
rainfall (1350–2050nullmm/year) are thus more susceptible to land-
slides than areas with less rainfall, and the current study's findings vali-
date this assumption. Drainage density is selected as a factor conditioning
landslides since Dou et al. (2015) stated that increasing density in the
drainage network increases the frequency of landslides. Thus, in this
study, the distance to drainage networks and the incidence of landslides
were most significant at 3.152–3.94 km�1, followed by 2.364–3.152
km�1. It is linked to the fact that topographical change produced by gully
erosion may influence landslide initiation (Dou et al., 2015). Therefore,
the drainage network plays a significant part in the crucial role in the
recurrence of the landslides in the study area due to the application of the
Analytical Hierarchical Process (AHP) technique in the current study.-
Following the work of Jebur et al. (2014), proximity to the river and road
buffer was chosen for our current study on landslide susceptibility
mapping based on the frequency of failures along the river and the road's
proximity. Construction of roads across steep slopes and hilly terrain
fractures the rock mass, reducing its strength and increasing the risk of
landslide occurrence (Donati and Turrini, 2002). Therefore, this
component is considered one of the most important in landslide sus-
ceptibility analysis.Lineaments known as tectonic faults create optimum
conditions for the occurrence of landslides. According to Tien Bui et al.
(2012) (2013), the lineament-proximity factor was utilized in specific
research to estimate the effect on landslides. Therefore, in the current
study for measuring landslide vulnerability, closeness to lineaments is
regarded as a landslide-conditioning factor.In this study, every
afore-mentioned factor (Elevation, Slope, Aspect, Geology, Soil, Fault
Line, Land Cover, Rainfall, Drainage Density, Proximity to Roads, and
Proximity to Lineaments) played a critical role since the study area is
located in Nepal, where landslides are prevalent. The current analysis of
Landslide susceptibility is in itself a summary that requires careful
consideration and analysis of each factor for accurate estimation.

The current analysis is based on currently obtainable remotely sensed
datasets, including satellite data (Sentinel-2 imagery), and elevation data
(SRTM DEM). The datasets given in Table 3 provide insights into the 10
input parameters (Fig. 2) utilized to achieve the objectives of the current
study, which is to designate the landslide-prone zones in the study region.

Among the 15 factors listed in Tables 3 and 9 of them (Geology, Fault
line, Land-cover, Elevation, Slope, Aspect, Drainage, and Roads) are



Table 6
Civic Amenities Present in the study area.

SL. NO. Hotel and Restaurants TYPE

1 Hill Top Restaurant ""Gol Ghar"" restaurant
2 Blue Heaven Restaurant restaurant
3 Trishuli River Side Resort restaurant
4 Anmol Food Land restaurant
5 Pokhara Hotel and Lodge restaurant
6 Chandra Hotel and Lodge restaurant
7 Kritan Bhojanalaya restaurant
8 Chitwan Taas Ghar restaurant
9 Ever Green Restaurant and Resort hotel
10 Sangam Hotel hotel
11 Stay Different Resort hotel
SL. NO. Banks TYPE
1 Deva Development Bank bank
2 ndep development bank bank
3 Rastriya Banijya Bank bank
SL. NO. Hospitals, Clinics & Pharmacies TYPE
1 Benighat Health Cllinic clinic
2 Malekhu Petrol Pump fuel
3 Rajmarga Samudayak Hospital hospital
4 Bihani Pharmacy pharmacy
5 Area Police Office police
SL. NO. Educatioal Institutes TYPE
1 Shree Shankha Higher Secondary School school
2 Shree Jogimara Pra Vi school
3 Shri Rastriya Ni Ma Vi school
4 Shri Janajyoti Pra V school
5 Shri Rastriya Pra Vi school
6 Shri Mahakali Pra V school
7 Shri Panchakanya Pra V school
8 Shri Panchayat Pra V school
9 Shri Basanta Pra Vi school
10 Shri Chandrodaya Ma Vi school
11 Shri Janagaun Pra Vi school
12 Shri Janachetana Pra V school
13 Shri Jhagaredanda Pra V school
14 Shree Dhusa Pra V school
15 Shree Jalkanya Pra Vi school
16 Shree Bhangeri Pra V school
17 Shree Janaprabhat Pra V school
18 Shri Bagh Bachala Pra V school
19 Shree Adarsha Pra V school
20 Shree Sidhha kali Pra Vi school
21 Shree Praja Pra V school
22 Shree Mahadevsthan Pra V school
23 Shree Lawang Pra Vi school
24 Sahara Bal Bikas Chandra school
25 Shree Baskharka Ni Ma V school
26 Shree Gaurishankar Pra V school
27 Shree Bhumisthan Pra V school
28 Shree Deurali Pra V school
29 Shree Ghairang Pra V school
30 Shri Buddhi Bikash Pra V school
31 Shri Bhumisthan Pra Vi school
32 Shree Mahakali Pra V school
33 Shri Tinkanya Pra V school
34 Shree Sitamai Pra V school
35 Shree Bageshwori Pra V school
36 Shree Malika Pra Vi school
37 Shree Harkpur Secondary School school
38 Shree Janjagriti Siddha Pra V school
39 Shree Beldanda kalika Pra V school
40 Shri Orbang Pra V school
41 Shree kunchurung Pra Vi school
42 Shree Netrajoti Pra vi school
43 Jeeban joti aadarbhut school
44 Shree Chandrodaya Uccha Ma V college

Fig. 9. Spatial integrated output of the current study risk zone susceptible to
climate change and topographical dynamism induced landslides in Benighat-
Rorang RM.

Fig. 10. Total annual precipitation of the study area.
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thematic layers extracted from the standard datasets and were computed
in a GIS environment, as shown in Fig. 2. Aside from that, only rainfall
data were utilized in the AHP approaches for the LSM output, and
additional climatic datasets (Temperature, Relative Humidity, Surface
Pressure, Wind Speed, and Wind Direction) were employed to assess the
influence of climate change on landslides.
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The DEM (“Digital Elevation Model”) data was built utilising open
data from the SRTM DEM and the layers of slope and aspect were
extracted from it. Land cover data were extracted from multispectral
Sentinel 2 imageries applying Object-Oriented (OO) classification using
GLCM (“Gray-Level Co-Occurrence Matrix”). The geology and fault line
datasets mentioned in Table 3 were acquired from the USGS. The
drainage network was derived using morphometric analysis of DEM data,
whilst the road network was derived fromOSM (“Open Street Map”). The
rainfall dataset has been acquired from CHRS (“Center for Hydromete-
orology and Remote Sensing”) Data Portal. All of the aforementioned
datasets were processed and estimated in Arc GIS 10.7 (https://desktop.a
rcgis.com/en/arcmap) to develop the landslide conditioning factors for
LSM.
3.3. Landslide conditioning factors

Generally, there is no set criterion for determining landslide sus-
ceptibility conditioning factors, and the factors chosen must be opera-
tional, measurable, non-homogeneous, and non-redundant (Ayalew and
Yamagishi, 2005). Eleven conditioning parameters were chosen for this
LSM based on area geomorphological features and previous research.
The relevant datasets in Fig. 2, were analyzed and converted into the
factors conditioning landslides, which were chosen for the current
study. These factors (Fig. 3) include soil, geology, land cover, fault lines,
elevation, slope, aspect, rainfall, drainage, proximity to lineaments, and
roadways.

https://desktop.arcgis.com/en/arcmap
https://desktop.arcgis.com/en/arcmap
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The conditioning factors considered for landslide in this study could
be divided into three major categories: geological, climatological and
social. Geomorphological factors include morphology, elevation, slope,
aspect, soil, fault line, drainage density and land cover. Whereas climatic
factor is the rainfall and social factors are, road proximity, and lineament
proximity. Geology and geomorphology have major roles in landslide
activities and susceptibility since various geological and geomorpho-
logical strata have varied strengths and vulnerabilities to landslide in-
cidents (Roering et al., 2005). Elevation is a crucial conditioning factor
for landslides, and two of the eleven conditioning variables (slope and
aspect) are direct measurements or are directly impacted by elevation
(Meena et al., 2019). As a result of taking the LSM into account, the
elevation of the region has been segmented into five groups in this study,
classified in the range of very low to very high: <650 m (very low),
650–1150 m (low), 1050–1550 m (moderate), 1550–2050 m (high), and
>2050 m (very high) above MSL (Fig. 3). Similarly, the slope angle
conditioning factor has been estimated from the SRTM DEM and divided
into five classes ranging from very low to extremely high: 15� (very low),
15�–30� (low), 30�–45� (moderate), 45�–60� (high), and >60� (very
high) and aspect wise the study area was divided into nine categories
based on slope direction: 0� (flat), 0�–22.5� (N), 67.5�–112.5� (E),
157.5�–202.5� (S), 202.5�–247.5� (SW), 247.5�–292.5� (W),
292.5�–337.5� (NW), 337.5�–360� (N). These were then classed into five
classes of susceptibility ranging from very low to very high, as shown in
Fig. 3. As the origin of earthquakes, active faults perform a significant
function in inducing landslides (Chen et al., 2018a,b), and active faults
have crucial roles in stone cracking, and triggering instability. This un-
connected geological structure in the study area decreases the rock's
shear strength, resulting in landslides. The proximity to faults has been
calculated considering the extent of landslides from the fault and
grouped into five classers depending on the range of landslide suscepti-
bility from very low to very high: <100 m (very low) 100–750 m (low)
750–1350 m (moderate), 1350–1950 m (high), >2050 m (very high),
illustrated in Fig. 3. Land cover is also a critical precondition for LSM
(Persichillo et al., 2017) as it often accounts for highly complex patterns
of landslides in the subsequent LSM.

Climatic factor rainfall has a prominent impact on the landslides in
Nepal (Dahal and Hasegawa, 2008). Rainfall characteristics can change
depending on meteorological conditions and topographical elements,
resulting in significant temporal and geographical variations during a
rainfall event. Landslide onset in Nepal is highly associated with rainfall
(Dahal and Hasegawa, 2008). The total annual rainfall obtained from
Nepal's District-Level Climate Data (NASA LaRC POWER Project, 2019)
from 1981 to 2019, divided into five classes: <350 mm/year (very low),
350–700 mm/year (low), 700–1050 mm/year (moderate), 1050–1350
mm/year (high), and >1350 mm/year (very high) for LSM.

The social factors like proximity to road or lineament are controlling
components for slope stability. The distance from roadways is a signifi-
cant anthropogenic element in the frequency of landslides (Dang et al.,
2019). In addition to greater road access, communities have seen an in-
crease in uncontrolled tree cutting. As a result, a road proximity map has
been developed created based on the idea that slope collapse occurs more
frequently on surrounding streets. The road network map has been ras-
terized and the proximity to the road was measured in meters to create
the map illustrating road proximity. After then, the map was divided into
five categories based on the susceptibility range: >800 m (very low),
600–800 m (low), 400–600 m (moderate), 200–400 m (high), and <200
m (very high) (Fig. 3). Apart from these, geological features such as
faults, bends, junctions, strata, and lineament zones have a higher impact
on slope stability. This interdependence can be worsened by rainfall or
tremors, which trigger collapse across these fragile zones (Kanungo et al.,
2012). The vicinity of the slope to such features has a tremendous impact
on its stability, heightening the risk of landslide occurrences (Michael
and Samanta, 2016). Thus, in the current study, the lineaments were
extracted from the Sentinel 2A imagery taking into consideration that the
risk of landslide reduces with increasing proximity from the lineament
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structures.

3.4. Methodology

The flow diagram for the present study's methodology, which sum-
marises all the metrics and datasets utilized to get the study results, is
shown in Fig. 4. In the current work, geographical and remote sensing
datasets were analyzed using a GIS environment, and spreadsheets were
used for quantitative analysis and data processing to generate the LSM.

AHP method has been adopted for the current study for mapping
landslide susceptibility and hazards due to its application flexibility and
knowledge-dependent usage. AHP is widely used in site selection, site-
suitability analysis, and assessing landslide risk (Ayalew et al., 2005).
The AHP comprises important steps of breaking down a decision question
into component factors, organizing those factors in a hierarchical
sequence, and finally assigning numerical weightage values to evaluate
the relative significance of each item based on their subjective relevance
(Saaty, 1994). The benefits of implementing AHP, being an expert-based
approach in landslide susceptibility assessment, are that almost all sorts
of landslide evidence can be incorporated in the discussion phase;
judgment is framed in such a way so that all input gets properly
considered, and discussion guidelines are centered on expert knowledge
and experiences (Thanh and De Smedt, 2012). In the current study, AHP
has been used to assign weighted factors to the causative factors
(Table 4).

3.4.1. Landslide susceptibility modeling
Eleven of the previously specified factors (elevation, slope, aspect,

drainage, geology, soil, fault line, land cover, road, closeness to linea-
ments, and roadways) were chosen for the current study, and each
parameter was classified and ranked (Table 4). These are then weighted
based on their level of influence regarding the other parameters. The
values allocated to the distinct parameters are shown in Table 4. The
susceptibility rankings are very high, high, moderate, low, and very low,
with a total weight of 14 for the specified parameters ranging from very
low to very high.

3.4.2. Social vulnerability analysis
Landslide susceptibility modeling has been carried out using geo-

spatial techniques to identify landslide-prone areas. WorldPop data were
collected at the VDC level for Nepal at five-year intervals over 2000,
2005, 2010, 2015, and 2020 to determine whether more significant or
lower patch populations became sensitive to landslides. Aside from that,
the location of public amenities throughout the research region was
taken into account when conducting the social vulnerability risk analysis.

3.5. Validation

Validation is a key element of a study since it offers information about
the models' predicted accuracy (Ghorbanzadeh et al., 2019). The accu-
racy scores show whether the model applied can accurately anticipate
landslide-prone areas (Pourghasemi and Rahmati, 2018). This study re-
gion's landslide inventory database contains 70% (152) of cumulative
landslide data points for training and 30% (46) for validation which was
done in field visit (Figs. 7 and 8). The LSM output can be confirmed using
scientific and analytical methodologies such as landslide density calcu-
lation, success rate curve, or chi-square testing. An LSM's overall value is
determined by the landslide density per class, which is a proportion of
observed landslides (Sarkar and Kanungo, 2004). Table 5 illustrates the
findings of LSM, and as per the validation graph (Fig. 6), the computed
and categorized susceptibility sections correspond strongly with the oc-
currences of last landslides. The assessment by success rate curve aids in
the validation of the LSM (Van Westen et al., 2003).

The success rate curve, used to validate the LSM output, is generated
by graphing the accumulated percentage of reported landslide incidence
against the accumulated percentage in declining LSM values. The area
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beneath the curve could be employed to measure the forecast accuracy
subjectively. The area beneath a curve equals 0.7269, indicating that the
total rate of success of the LSM is 72.69% (Fig. 6). It means that in the
LSM, if 20% of the classes possess a high landslide susceptibility rating
for forthcoming landslides, 68% of the subsequent landslides would
accurately fit. Because of this degree of precision, the LSM was deemed a
better landslide susceptibility mapping for the studied area with a
1–100% (lesser to greater susceptibility) class of LSM.

4. Results and discussion

4.1. Landslide susceptibility analysis

The current study indicates that if AHP could be employed to analyze
landslide activity in each predisposing factor, and the results indicate an
intriguing correlation between the exacerbating causative variables and
landslide incidence. Fig. 5 depicts the results of merging multiple
weighted parameters inside the ArcGIS weighted summation framework
using the AHP method. The resultant LSM output is divided into low,
medium, high, and highly vulnerable landslide-prone zones. According
to Table 5, the extraordinarily high landslide susceptible zone accounts
for 10.77% (21.95 km2) of the research area, while the high, moderate,
and low susceptible zones account for 26.05% (53.1 km2), 26.97%
(54.97 km2), 17.14% (34.94 km2), and 19.06% (38.84 km2), respec-
tively. Thus, the estimated findings indicate that the zones crossing steep
slopes are located along the NorthWest, SouthWest, and South East. As a
result, infrastructures, culture, and subsistence activities are extremely
susceptible to landslides, debris slides, and mudflows caused by these
steep elevated slopes.

5. Risk analysis

Analyzing land slide risk requires zoning, which is founded on hazard
mapping data, considering the probable impact to humans and properties
(annual value of damages incurred) for those aspects under risk, as well
as their frequency and susceptibility across temporal and spatial scales
(Flentje et al., 2007).Thus, based on analyses of the landslide suscepti-
bility zones, climatic factors increasing landslide susceptibility, and so-
cial vulnerability parameters including landslide-prone civic amenities
and vulnerable population zones, Fig. 6 depicts a final risk zone map of
landslide-prone areas based on the results of these analyses. The steep
hills areas in the southeast and northwest have a very high risk of
landslides, according to the risk zonation map. As a result of steep slopes
close to rivers, steep slopes in the same area are prone to landslides.
Additionally, the surrounding areas, particularly those in the northeast,
northwestern, southeast, and southern regions, provide a moderate to
low risk of landslides.

6. Discussion

Nepal is vulnerable to natural disasters due to a number of factors,
including its rough and fragile geophysical structure, high relief, steep
slopes, extremely complicated geology, varying climatic factors, and
active tectonic processes still going on in the Himalayan region. The
human interference and subsequently uncontrolled and unplanned set-
tlement for the growing population, poor economic situation, and low
literacy rate further exacerbated the situation. Therefore, in this study,
AHP-based landslide susceptibility mapping was performed to identify
the potential landslide zones in Benighat-Rorang Rural Municipality of
Dhading in Nepal. As previously stated, in the current study's resulting
AHP, considering the geospatial formats of the factors mentioned above,
taking into account 26.05% (53.1 km2) of the study area falls under the
zone of high susceptibility to landslide, 17.14% (34.94 km2) of the area
falls under moderate exposure to landslide, and 19.06% (38.84 km2) of
the area falls under lower susceptibility to landslide. (Meena et al. (2019)
also conducted the susceptibility zonation in Central Nepal, where they
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discovered that 13.17% of the region is extremely vulnerable to land-
slides based on the AHP map that has been generated.

The LSM of the current study (Fig. 5) indicates that the study area's
southern places are very highly susceptible to landslides, and the prob-
ability gradually decreases towards the north. The internal validation
based on field observations and inventory data (70% or 152 points in
training and 30% or 46 points in validation) further supports the results
as well as other model derived products for Dhading and surroundings
(Ray et al., 2020; Regmi et al., 2016; Ray and Jacobs, 2008). In the
current study, 70% of the landslide sites (152 points) were chosen at
random from the landslide inventory map to generate the training
dataset. These landslides have been then translated into 30 * 30 m pixels.
Finally, the training data has been generated by randomly choosing these
landslide and non-landslide pixels with the 14 landslide conditioning
variables. 30% of the other landslide locations (46 points) were also
transformed into 30 * 30 m pixels for the testing dataset. To construct the
testing dataset, these landslide and non-landslide pixels have been
sampled given the 14 landslide conditioning factors. The training dataset
has been then utilized to develop the landslide model, whereas the
testing dataset was utilized to validate and compare the landslide models'
performance. The factors responsible for the vulnerability of the region
towards landslide have been identified and categorized into three broad
factors namely geological, climatic and socio-economic factors.

Since different geological units in the study area are more or less
prone to active geomorphological processes, geology is an important
component in assessing landslide susceptibility and risk (Dai et al., 2001;
Pachauri et al., 1998). Geological parameters like elevation, slope,
morphology, soil, land cover and position of the fault line were analyzed
and added as input in the AHP model. The Central Nepal, especially
Dhading area falls under highly unstable zone with regional slope
instability (Kayastha and De Smedt, 2009; Ray, and De Smedt, 2009)
with folded and fragmented rock types. Moreover, the study area is
covered with Dystric Cambisols soil, which is considered as young soil
and highly prone to landslides. Added to the highly unstable geology,
high precipitation rates during monsoon further worsen the condition.
The increasing trend of observed precipitation in Nepal (Fig. 7) is well
documented in literature (Baidya et al., 2008; Pokharel et al., 2020;
Mu~noz-Torrero Manchado et al., 2021). With the extreme rainfall events
likely to increase in future (Karki et al., 2017; Shrestha et al., 2021;
Bohlinger and Sorteberg, 2018) as a result of climate change, the land-
slide vulnerable zones are likely to increase. Furthermore, the poor
socio-economic condition of the local communities pose them in imme-
diate danger from natural hazards like landslides. The population
residing along the northern boundary of the study area are highly
vulnerable according to the analysis. The risk map of Benighat-Rorang
(Fig. 6) generated by integrating all three factors (including geological,
climatic and socio-economic) further illustrates the places currently at
high risk from the landslides.

Increasing opportunities for local people involve building in-
frastructures like road network, building and other amenities in order to
improve access for large number of growing population. The informal
constructions along the roadways or famous spots frequently cause
landslides by undercutting slopes, allowing water to infiltrate into haz-
ardous slide planes, and generating debris that is quickly mobilized
during heavy rain (Kjekstad and Highland, 2009). Therefore, a general
perception that the number of landslide events are increasing, might be
due to increased vulnerability (greater population exposure to risk) than
an actual growth in intensity or frequency. This perception was tried to
establish via analyzing social vulnerability of the study area. As previ-
ously mentioned, a growing population needs civic amenities like bus
stop, hospitals, police stations, banks, hotels and resturants to function
properly. Since the study area is located in the mountainous terrain,
unplanned constructions might cause the structures vulnerable. There-
fore, vulnerability assessment of the social infrastuctures were also per-
formed in this study. At the same time, population density was also
calculated in the study area to identify the places where landslide events
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could have a more devastating effect in the lives and livelihoods of the
community.
6.1. Social vulnerability

6.1.1. Analysis of landslide-prone civic amenities
The study area (Benighat-Rorang RM) is in Nepal's Hill Region, which

is surrounded by the country's most populated districts (Pokhara Valley,
Kathmandu). Due to the steep slopes of the hills, this region is prone to
avalanches during the winter, and moreover, landslides along with
mudflow occurring during the monsoon, once the slopes get saturated
and weakened by rain. Thus, landslides induced by climate change and
dynamic geophysical settings have wreaked havoc on the area's existing
Fig. 11. Important civic amenities present across the la

181
civic amenities. This sort of hindrance is common throughout Nepal's
monsoon season, but the frequency and severity of such incidents and
problems have grown compared to previous years. Individuals have often
been forced to shift their belongings on their backs, and others have been
unable to access hospitals, educational institutions (schools and col-
leges), banks, hotels, administrative offices, and other facilities. Thus, the
important civic amenities susceptible to landslides' wrath have been
listed in Table 6 and plotted in Fig. 8.
6.2. Population vulnerability analysis

Although many regions around the world are vulnerable to climate
hazards, climate vulnerability is determined by the nature and severity of
ndslide susceptible zones in Benighat-Rorang RM.



Fig. 13. Spatio-temporal vulnerability map displaying population exposed to
landslides, 2020.
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the hazard, the sensitivity of the environment, the quantity of impacted
people, and the capability to recover. The current study indicated sig-
nificant regional disparities in population susceptibility to climate
change throughout the study area, Nepal, with the high mountain zones
showing the most sensitivity, followed by the lower elevations. Accord-
ing to a recent examination by Aryal (2012) on historical catastrophe
data, the frequency and intensity of disaster occurrences are increasing in
Nepal coinciding with continuous population growth.

In the current study, as per the results of our analysis, Fig. 9 shows the
population vulnerability has increased from time to time during
2000–2020. It can be observed that specifically the Northeastern section
of the Benighat-Rorang RM has become more vulnerable to landslide
incidence from the year 2000–2020. The resultant spatial distribution of
population vulnerability (Fig. 10) towards climate-induced landslides as
a consequence of exposure, susceptibility, and lack of adaptation capacity
revealed that the majority of the study area's high mountainous regions,
the northeast region, and sections of the riverside regions accrossed-hill
zones are the most sensitive to climatic calamities (see Figs. 11–13).

7. Conclusion

According to the study findings, climate change-related risks have
affected the study region in several areas. Examining climate data and
studying perceptions, consequences, mitigation plans, and adaptation
tactics at the community level have been beneficial. The current study
highlights the condition of the local community by looking at civic fa-
cilities, perception, and observed climatic datasets by observing
increased temperatures and irregular rainfall patterns. The results of the
current study indicate that landslide susceptibility is highest along the
southern border of the study area and the probability of landslides
Fig. 12. Spatio-temporal vulnerability map displayin
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gradually decrease towards north which is understandable as the active
fault line is situated at the south of the study area. The landslide risk
assessment produced similar kind of results with higher risk in the south
and lower in the northern part of the study area. The effect of probable
landslides on the community was also evaluated through the vulnera-
bility assessment of important social infrastructure and population den-
sity across the study area. Although the southern part of the study area is
more prone to landslides, the social vulnerability is higher towards the
g population exposed to landslides (2000–2020).
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north and north-eastern border of the study area. This might be due to the
fact that along the southern border, the population is very low which
contributes of the low vulnerability and vice-versa.

Landslides in Dhading have affected the community in several ways,
including the socioeconomic issues residents face, the productivity of the
agricultural sector, and the frequency of natural disasters like landslides.
The effects of various municipal facilities on the local economy impact
people's daily lives. As a result of environmental issues, many people turn
to alternative sources of income, such as wage and non-resident
employment. The community should already begin to undertake
several tactics to protect itself against the current and future conse-
quences of climate change and adapt to changing environmental cir-
cumstances. With this in mind, policymakers should build infrastructure
to help communities implement new sustainable measures in response to
hazards induced by climate changes and regional dynamic tectonic
settings.
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